
-R167 623 THE ROLL SACK CHIP: HARDWARE SUPPORT FOR DISTRIUTfED /
SIMULATION USING TIN. . (U) UTAH UNIV SALT LAKE CITY DEPT

Ie ,OF COMPUTER SCIENCE R M FUJIMOTO ET AL. OCT 67
WtRSFEUUCS-56S17-0G14-61 F/O 12/5 M

mhmhmhhmmmhl

Eu.".

L32..

LAO 12. 120

I

S 0 0 P O. 0 0 di*.

%-.%

OTIC FILE COPY

THE ROLL BACK CHIP:
HARDWARE SUPPORT FOR DISTRIBUTED

SIMULATION USING TIME WARP

0UUCS-87-025
Computer Science Department

University of Utah

TECHNICAL REPORT::

-

Department of

Computer Science

DTIC
ELECTE

DC021987

University of Utah Q H

Salt Lake City, Utahr pp Orcdfrpubc MUG 87 10 29 0Qf
IMatbuton Unlmited

~ W W k

THE ROLL BACK CHIP:
HARDWARE SUPPORT FOR DISTRIBUTED

SIMULATION USING TIME WARP

UUCS-87-025

Computer Science Department
University of Utah

Salt Lake City, Utah
October, 1987

by %'." . "-""""++

Richard M. Fujimoto, Jya-Jang Tsai and Ganesh Gopalakrishnan
Computer Science Department,

University of Utah,
Salt Lake City, UT 84112

%. %

V

.'r,NS, %,%.+ -'%. % %.

%

This work was supported by ONR Contract Number N00014-87-K-0184. and NSF Contract Number MlP-- %
' ,09. % " ?% % %, ,

XT!$ O GRi 'h - -

D!!C TAD 03 (:% V~
V -..-Unannounoed .3

Justifloato
* % .

Distribution/ L
Availability Codo .

~Avail and/or

e ,, % %,%

Z

rrNVrIwwwjwrVrIJwrh nUWV wv Wn nnnrUP-L .ir'~ %c

Contents

1 INTRODUCTION1

2 RELATED WORK 3

3 THE ROLL BACK CHIP 3

3.1 Functional Specification of the Roll Back Chip.......................... 4

3.1.1 Rollback Chip Operations................................... 5

3.1.2 The Memory Map.. 6

3.1.3 Physical Addresses and Address Translation.....................7

3.2 Informal Description of the Rollback Chip Algorithm...................... 8

3.2.1 Written Bits... 8

3.2.2 The Seldom Written Data Problem............................ 10

3.3 A Lazy Rollback Algorithm 11

3.3.1 The Reset Operation 3

3.3.2 The Read Operation 13

3.3.3 The Write Operation 14

3.3.4 The Mark Operation 14

3.3.5 The Rollback Operation. 14

3.3.6 The Advance GVT Operation. 15

4 EXTENSIBILITY V')

4.1 Extentions for Larger Mark Frames........ 1

4.2 Extensions for More Mark Frames........

5 CACHE AND MEMORY MANAGEMENT UNITS 21

6 IMPLEMENTATION OF THE RBC 23

7 CONCLUSION 24

List of Figures

1 Configuration for Each Node of the System 4

2 Virtual and Physical Address Spaces 6

3 Address Format .. 7

4 The Written-Bits Array 9

5 Program to Locate Most Recent Version of Line 9

6 Definition of New and Old for a Line 11

7 Line State I I

8 Rollback chip operations .. 12

9 Multi-RBCs with a Single CPU 16

10 Extention for Larger Frames 17

11 Extention for More Frames 22

12 Functional Block Diagram .. 23

V6

j

iii

Abstract

Distributed simulation offers an attractive means of meeting the high computational de-
mands of discrete event simulation programs. The Time Warp mechanism has been proposed
to ensure correct sequencing of events in distributed simulation programs without blocking pro-
cesses unnecessarily. However, the overhead of state saving and rollback in Time Warp is one
obstacle that may severely degrade performance.

A special purpose hardware component, the rollback chip (RBC), is proposed to manage
the state of a processor and provide an efficient rollback mechanism within a node of a parallel
computer. The chip may be viewed as a special purpose memory management unit that lies
on the data path between processor and memory. The algorithm implemented by the rollback
chip is described, as well as extensions to the basic design. Implementation of the chip is
briefly discussed. In addition to distributed simulation, the rollback chip may be used in other
applications using the Time Warp mechanism, notably distributed database concurrency control.

I INTRODUCTION

Discrete event simulation programs often possess computational requirements far exceeding
the capabilities of the fastest available machines. For example, simulation of communication net-
works, digital logic networks, and large parallel processors often require hours or even days on
conventional, uniprocessor machines[RF87]. One approach to solving this problem is distributed
simulation - the execution of simulation programs on a parallel computer. A distributed, discrete
event simulation program consists of a collection of autonomous logical processes that interact by
exchanging timestamped messages. The seemingly high degree of parallelism that is present in
many of the aforementioned applications combined with the recent emergence of multiple proces-
sor computer systems containing hundreds or thousands of high performance microprocessors has
renewed interest in this approach.

However, a critical problem must be resolved by the distributed simulation program, namely.
the management of simulated time. Each logical process must ensure that it only processes incom ing
messages in non-decreasing timestamp order. This is a difficult task because, in general, each
process is uncertain as to what messages will be sent to it in the future. As a result, a process
may be forced to wait until it can determine with absolute certainty the next message that should
be processed. This situation, called artificial blocking, results from uncertainty of future incoming
messages (in contrast to the usual notion of blocking in parallel programs that results from data
dependencies in the computation), and can easily lead to deadlock.

The deadlock problem has been attacked by several researchers and distributed simulation
algorithms based on deadlock avoidance or deadlock detection and recovery methods have been
developed [CM79,DS80]. However, the artificial blocking problem remains, and empirical evidetic
indicates that these methods fail to achieve good speed up for many workloads that contain moderate
or high degrees of parallelism [Fuj8S,ReeS7].

0 N f

In contrast to these "conservative" distributed simulation strategies, the Time Warp approach
uses an "eager" event (i.e., message) processing policy where received messages are processed as
soon as the processor to which the logical process is mapped is available, independent of any
messages that might arrive in the future [Jef85]. A roll back mechanism is used to recover from

errors that might arise should events be processed in an incorrect timestamp sequence. An elegant
mechanism called anti-messages is used to undo the effect of messages sent by the rolled back
computation. Finally, one other important aspect of the Time Warp paradigm is the notion of
global virtual time, or GVT. GVT provides a bound on the amount of computation that will have
to be rolled back. This provides a mechanism to reclaim memory used to hold previously saved
state information necessary for roll back.

The Time Warp mechanism may also be applied to other applications besides distributed
simulation. Notably, Time Warp has been proposed for distributed database concurrency control
and virtual circuit communication. Use of Time Warp in these applications are discussed in [JefS5].

The Time Warp approach offers great potential for good performance because it avoids both
the artificial blocking and deadlock problems discussed above. However, Time Warp may still fail to
achieve good speedup even for simulation programs exhibiting a high degree of parallelism because:

" Rollbacks may occur frequently - any rolled back computation represents time wasted by
the processor.

" The overhead to allow rollback can be great - the state of the computation must occasionally
be saved. This overhead must be incurred even if no rollback is necessary.

The former problem, frequency of rollback, is best tackled by appropriate scheduling tech-
niques. This paper focuses on the second problem. We propose the use of special purpose hardwarf
to minimize state saving and state management overhead. A memory management chip. called the
rollback chip (or RBC) is proposed for this purpose. The RBC is a key component of a special
purpose, distributed simulation engine based on the Time Warp paradigm that is currently being
investigated.

The rest of this paper is organized as follows: The next section discusses related work.
Section 3 is devoted to describing the RBC and the algorithm it uses for managing program state.
Extensions to the proposed RBC design to increase its flexibility will then be discussed, followed by a
discussion of issues related to incorporating the RBC in a design using off-the-shelf microprocessors
that contain on-chip caches or memory management units. Finally, a prototype implementation

that is currently under development is briefly described.

2-1

S..

2 RELATED WORK

1.

Use of parallel processing and special purpose hardware to improve the performance of simu-
lation programs is not new. For example, numerous logic simulation engines have been constructed
and are now available from commercial manufacturers that yield speedups ranging from a factor of
10 to 1000 (see [FWW84,SI861 for a taxonomy and survey of this work). However, work up to now
has been restricted to continuous and fixed time increment paradigms. These are not appropriate
for applications such as communication networks, high-level simulation of computer architectures.
and queuing networks, to name a few. The focus of the current discussion lies in the use of special
purpose hardware to be used in a high performance, discrete event simulation engine.

Work in speeding up variable time increment simulation has focused on the use of general
purpose multicomputers and multiprocessors in distributed simulation. Numerous distributed sim-
ulation algorithms have been developed (e.g., see [JJE79,Mis86,Jef85]; a survey is presented in
[Kau87]). Comfort has examined using dedicated processors to implement simulation primitives
such as event list manipulation and random number generation [Com84,Com82,Com83,C*84]. How-
ever, the amount of parallel execution that can be obtained from such an approach is limited.
Others have proposed running independent trials of the simulation program on separate processing
elements [B*85]. While useful in Monte Carlo simulations where results from individual simulation
trials can be combined to produce statistically significant results, this approach cannot be used in
deterministic simulation, e.g., instruction-level simulation of parallel computer architectures driven
by parallel application programs. Nevertheless, a special purpose simulation engine must be able
to exploit such techniques whenever possible.

3 THE ROLL BACK CHIP

The envisioned distributed simulation engine is an extensible message-based parallel computer
that features widespread use of ASICs (application specific integrated circuits) as well as more
conventional components such as microprocessors and memories. No globally shared memory is
used as it is not essential and would require an expensive interconnection switch. The logical
topology of distributed simulation programs cannot be known a priori, so a symmetric hardware
topology such as a mesh or hypercube should be used because they do not contain any inherent
bottlenecks [RF871.

Each node of the envisioned system is a multiprocessor containing a general purpose micro-
processor (GPP) with rollback hardware support (RBC), a communication processor, and various
specialized processors (ASICs) as described below (see figure 1). The GPP executes application
and system code and coordinates the operation of the ASICs. Shared memory is used within each
node to facilitate tightly coupled interactions among the individual ASICs. An expensive inter-
connection switch is not required because the number of components within each node is limited.
The communication processor provides hardware support for message-based communications. Otte

3

GPP - RBCa d MemoryI

ASIC

Comm. To
ProcessorOte Nodes

ASIC

Figure 1: Configuration for Each Node of the System

design of such a component is described elsewhere[RF87].

The purpose of the roll back chip (RBC) is to provide an efficient mechanism to roll back
computations within a single processor node under the control of the Time Warp program running
on the node. It is the node's responsibility to determine when the state of the simulator running in
it should be checkpointed, i.e., "marked", when rollback should occur, and how far the computation
should be rolled back.

The roll back chip is, in effect, a memory management unit. It ensures that any state infor-
mation which may have to be restored by a rollback operation is preserved. The state information
is eventually discarded as global virtual time is advanced. Use of special purpose hardware allows
otherwise time consuming operations such as roll back to be performed rapidly in a few clock cycles.

3.1 Functional Specification of the Roll Back Chip

A conceptual model of the storage management functions provided by the rollback chip cali
be described as follows: the rollback chip maintains different versions of state variables to enable a
previous version to be restored when a rollback occurs. Different versions of the same variable arc
stored in separate storage areas called mark frames. The organization of the mark frames can be
viewed, at least for the moment, as an unbounded stack. The current mark frame or CA!I. refer,

4

'S

to the frame at the top of the stack. The CMF register in the rollback chip contains a pointc-r to
this frame.

It is the responsibility of the CPU to indicate when the current state of the processor should
be preserved, and may require restoration as the result of a rollback. The CPU issues a mark
operation to mark the current state as one which may have to be restored in a rollback. This
operation pushes a new mark frame onto the top of the stack. The rollback chip ensures thlt
subsequent memory write operations access the current mark frame so that older versions of ti,
data remain preserved deeper in the stack. A rollback operation requires one to pop mark frame,
from the stack until the desired version of the simulator state is obtained. Each read operation
requires a search through the stack to locate the most recent version of the data.

Of course, it is not realistic to assume that an unbounded stack can be used. According to I Ih,

Time Warp paradigm, very old versions of the simulator can be discarded when their tilnestanip
is smaller than global virtual time (GVT), that is, all except the most recent version preceding
GVT. This process of reclaiming memory used by old state vectors is called fossil coliction. Fo.i.,Il
collection is performed in the rollback chip by discarding mark frames from the bottom of the stack.
To allow this storage to be re-used, the mark frames are organized as a circular list. In addition to
the current mark frame register, the rollback chip also maintains a register called the oldest 1ark
frame (OMF) register which points to the oldest mark frame that may have to be restored on a
rollback operation.

3.1.1 Rollback Chip Operations The rollback chip supports six operations: reset, memory re.;ad.
memory write, mark, rollback, and advance GVT. The CPU is responsible for generating thles,
operations (via writes into control registers of the RBC chip) as governed by the Time Warp
program which it is executing. The functional behavior of these operations are described below.

Reset Initialize the rollback chip prior to the execution of a Time Warp program.

Mark Mark the current state of the system as one which may have to be restored by a rollback
operation.

Write (A,D) Write data D into memory address A. If the data at this location has been written I
since the last mark operation, then the most recent version of this data may be overwritten.
Otherwise, the existing data at this location must be preserved.

Read (A) Read the most recent version of data associated with address A and return this data
to the CPU.

Rollback (k) Restore the system state to that which existed just prior to the kth previous mark
operation. This effectively undoes all modifications to state variables since the kth previ,,us
mark operation.

Advance GVT (k) The k oldest state vectors are no longer needed, and can be fossil ol, .

-I

P1WFFL ~ P~U1~~ m air'.m mf~ 'W.E"11 ''. l".5 a 5 KAM A . ~i '*. W rW -,I W 5fV .. VK7W ~. .. 3 .N'

I-

0 line 0
line 1

ORDINARY Frame 0
MEMORY line 15

line 0

SA line 1
VERSION Frame I
CONTROLLED
MEMORY line 15

SA+SZ

FORBIDDEN
MEMORY

SA+(SZ*NMF)

line 0
ORDINARY line 1
MEMORY Frame 15

line 15

VIRTUAL ADDRESS SPACE PHYSICAL ADDRESS SPACE

Figure 2: Virtual and Physical Address Spaces

3.1.2 The Memory Map The address space seen by the CPU contains four types of memory:

1. Version Controlled Memory contains state variables whose previous values can be restore(d

via rollback operations.

2. Ordinary Memory is memory which is not version controlled, and therefore cannot be restored
by the rollback chip to a previous state. Read and write accesses to ordinary memory have
the same semantics as conventional random access memory. Code as well as any data area,5

which do not need to be restored on rollback are stored here.

3. Forbidden Memory is memory which is managed by the rollback chip and is not direcl.NI
accessible to the CPU. 1

4. Control and Status Registers of RBC. These may be mapped anywhere in the ordinary inmii-

ory address space.

The compiler must ensure that the appropriate type of memory is used by lIheiil,
program, and that nothing is mapped to forbidden memory.

6

Le. e Z. 4

1.,
'S

The memory map seen by the CPU is depicted in figure 2. We assume the memory is byte
addressable. In figure 2:

SA or starting address indicates the beginning address of version controlled memory.

SZ denotes the size in bytes, of a single mark frame. All mark frames are the same size, so frame
zero begins at address SA, frame 1 at SA + SZ, etc.

NMF denotes the number of mark frames managed by the rollback chip.

Version controlled memory occupies addresses SA to SA + SZ - 1, and forbidden memory -

occupies address SA + SZ to SA + (NMF * SZ) - 1 inclusive. All other addresses refer to ordinarY
memory or RBC control or status registers. Read and write references to ordinary memory are
passed by the rollback chip unmodified to the memory system.

MSB LSB

23 2 1098 7654 3210

Rest Of Address Frame Line Byte

Figure 3: Address Format

3.1.3 Physical Addresses and Address Translation The memory map described above defines a
virtual address space which is visible to the CPU. One can view the rollback chip as a special type
of memory management unit which maps virtual addresses generated by the processor to physical

addresses which are passed to the memory system. The physical address space, i.e., the memory
map seen by the rollback chip, is essentially a more detailed version of the memory map described
above.

The rollback chip subdivides the forbidden memory into mark frames, and each mark frame
is again composed of a set of lines (see figure 2). As will become apparent momentarily, a line is
similar to a line or block in a cache memory system.

A prototype rollback chip is currently under development. It supports 16 mark frames, each
containing 16 lines, and each line contains 16 bytes. Each frame therefore contains 256 bytes, and
the rollback chip manages a total of 4K bytes of memory. This chip is intended to demonstrate
the concept. Rollback chips for practical applications would be expected to manage much larger
amounts of memory. The discussion which follows will refer to the prototype chip in order to

facilitate the presentation. Schemes for extending the current prototype will be discussed later.

For efficiency reasons, it is advantageous to assume that SA, the starting address of frame,

zero, is a multiple of NMF * SZ, i.e., a multiple of 4096 in the prototype chip. This ensures that

%'"V

the 12 least significant bits of SA are all zeros. If one further assumes that the frame size is a power
of two, then additions requiring carry propagation are not necessary to form physical memory
addresses.

We will assume that memory operations do not cross line boundaries. Extending the roll-
back chip to allow memory accesses across line boundaries is straightforward, however, since such
references can be viewed as two independent memory references to different lines.

The virtual address generated by the CPU is (say) a 24 bit memory address referring to
ordinary or version controlled memory. If the reference is to ordinary memory, the physical address,
is identical to the virtual address, and is passed to the memory system unmodified. However, if
the address refers to a location in version controlled memory, the rollback chip further subdivides
the address into the following fields (see figure 3):

Byte the four least significant bits of the address. These indicate a byte within a line.

Line the next four significant bits of the address. These indicate a line within a mark frame.

Frame the next four significant bits of the address. The address generated by the CPU must have
zeros in these four bits, or else an error is flagged by the RBC.

ROA or "Rest of Address", the remaining twelve bits of the address field. If these bits match the
upper twelve bits of SA, then the address refers to version controlled memory. Otherwise,
the memory request refers to ordinary memory.

The rollback chip translates the virtual address to a physical address by replacing the frame
number field with either the current mark frame in the case of a write, or the frame holding the
most recent version of the data in the case of a read. This address is then passed to the meriiory
system and the memory operation is performed1 .

3.2 Informal Description of the Rollback Chip Algorithm

Before describing the implementation of the six rollback chip operations - reset, read. write.
mark, rollback, and advance GVT - some preliminary discussion of an important data structure
and an implementational problem must be described. These will be described next, followed bi a
description of each of the six rollback chip operations.

3.2.1 Written Bits Recall that the read operation must locate the mark frame containing th,
"most recent version" of the referenced line. The rollback chip must maintain some state in fornia-

'Actually the operation of reads and writes is slightly more complicated, but this address translation mn.c hanii

serves as a good conceptual model to understand the operation of the rollback chip

.

4.. ',e4 J* *ir 'Ar r . ~- ~ - . '

,. -, N .t ".,

EACH WB[IJ] IS A BIT

FRAME NUMBERS
0 15

0

LINE - -

NUMBERS

15

Figure 4: The Written-Bits Array

tion to identify this line. In particular, the rollback chip must keep track of which lines in each
mark frame contain valid data, and which do not.

The rollback chip maintains an array of written bits (WB) for this purpose (figure 4). The
written bits are stored within the RBC for quick access. A single written bit is associated with
each line of each frame managed by the RBC. The written bits are organized as a two dimensional
array: WB[I,f] is set whenever data is written into line I of mark frame f. Each column of bits in
the array indicates the bits for a single mark frame, and each row the bits for a given line number
across the various frames. A set written bit indicates that the data stored in that line in memory
may be returned to the CPU. A cleared written bit indicates that no valid data is stored in the

FOR i:O TO NMF DO
/* return frame number relative to CMF */
IF WB[Line, (CMF-i+NMF) MOD NMF) - I THEN RETURN (i);
END;

RETURN (ERROR); /* all zero written bit is error state */

Figure 5: Program to Locate Most Recent Version of Line

9

N.

E~~~~~~YWN~~~~~~~~~~1'.F~~~~~.-y W WY~ ~ Wr'~~~~~"(~ i~7~~ ~~lWIi W~~'~ '~2 'J~F .7, WZ IL- IU L'M V~R V -V- - WV WWV

line. The written bits are similar in function to the 'dirty bits' associated with pages in a paged

virtual memory system.

When a memory read occurs, the most recent version of the data is found by searching the

row of written bits corresponding to the referenced line, beginning with the current mark frame and

proceeding in turn to older mark frames. The first set written bit encountered indicates the frame

with the most recent version of the line. This operation is described by the program fragment

shown in figure 5. A hardware error has occurred (or the chip has not been reset) if all of the

written bits for a line are reset. The rollback chip is in an illegal state if this occurs.

The searching operation can be efficiently implemented in hardware as follows: first the row of

written bits for the referenced line is read. The bits are then rotated to align them so that the CMF

bit is in the rightmost bit position. Finally, the shifted bits are passed through a priority encoder

with the rightmost bit assigned position zero and given highest priority. The resulting number

indicates the frame relative to the current mark frame which holds the most recent version of the :

data. The most recent version of a fine can thus be found using straightforward combinational%

logic.

3.2.2 The Seldom Written Data Problem The circular buffer implementation of the mark frames

provides a very simple and elegant mechanism to implement fossil collection. However, it presents

a problem which complicates the rollback algorithm somewhat. To gain some insight into this

complication, consider an erroneous algorithm in which the mark operation increments the CMIF

pointer and clears all of the written bits corresponding to the newly acquired mark frame. From a

conceptual standpoint, this is sensible because the purpose of the mark operation is to allocate a

fresh frame on top of the stack. However, consider a piece of data which is written very seldom, e.g.,

only once during the entire computation. In this case, successive mark operations will eventually
"wrap around" and clear the only written bit set for this line, erasing our only record of valid data

for that line.

To circumvent this problem without abandoning the simple circular buffer mechanism, sonmc

data copying will be required. One approach is to impose the following constraint: all of the writ tenl

bits in the frame pointed to by the OMF register must be set. This has the desirable property that

it guarantees that valid data can always be found for the oldest frame to which we will ever have

to roll back. However, this approach requires that a copy operation take place whenever OMF is

advanced to a frame with one or more zero written bits. This will require seldom written data to

be copied on virtually every advance GVT operation.

The rollback algorithm described below employs a lazy approach to copying. Data copying

is deferred until the data which must be preserved for a possible future rollback is about to be

overwritten. Data copying is also required in some circumstances to prevent the RBC from entering

an invalid state. The lazy copying algorithm avoids unnecessary copying of seldom written data.

10

%9

3.3 A Lazy Rollback Algorithm

OMF <> CMF in general

OMF CMF

old new

OMF = CMF = 0 after Reset

old'1 oldnew

Figure 6: Definition of New and Old for a Line

state old new
00 =0 =1
01 =1 =0
10 =1 >0
11 > 1 any

Figure 7: Line State

The principle feature of the lazy rollback operation is that it avoids excessive data copying of
seldomly written data. In addition to the written bits, some state information is associated with
each line to denote the state of that line. Two bits are required for each line, in contrast to the
written bits in which one bit is required for each line in each frame. 32 state bits are required ill
the prototype chip since 16 lines are provided in each mark frame.

Consider the written bits for line 1, i.e., row 1 of the written bit matrix. Let us define 71(wi
as the number of written bits set in the frames more recent than the oldest mark frame, up lo awl

11

'~. J A~'~' -:'

RESET: WB[i,jJ : if Qj z 0) then I else 0;
CKF := 0; OMF := 0;

MEMORY READ AT ADDRESS Cron, 1 0000 1 line I byte):
Read Mtroa I XRV I line I byte]

WRITE DATA D AT ADDRESS (rca. 1 0000 1 line I byte]:
Came 1: /* WB~line,CNF)=l AID statetline) != 00 *

Write D to N~roa I CMF I line I byte)
Case 2: /. WB~lineCMFJ=l AND state~line) = 00 *

Buffer := N~rca I CXF I line 1 0000)
Write Duffer to N~roa, I OMF I line 1 0000)
Write D to X~roa I CMF I line I byte)

Case 3: /e WBlineCNF)=0 AID statetline) != 00 *
Buffer := N~roa I MRV I line 1 0000)
Write D into Buffer
Write Buffer to N~roa I CXF I line 1 0000)
WB~line.CXF) :- 1

Cane 4: /* WB~line,CMFJ=0 AND state~line) = 00 e
Buffer := Krona I KRV I line 1 0000)
Write Buffer to MKroa I OMF I line 1 0000)
WB~line,OMF) := 1
Write D into Buffer
Write Buffer to X[roa I CMF I line 1 0000]
WB[lino,CMF) := I
WB~lineNRV) := 0

MARK OPERATION:
IF ((CF+1)=OMF) THEN

ERROR: Ran out of Mark Frame
FOR EACH LINE i:

IF (state[iJ 10) AID CWB~line,CNF) = 1) THEN
buffer :M~roa I CMF I line 1 0000)
Write buffer to M~roa I OMF I line 1 0000]
VB~lineOMF) 1;
WB~line,CMF) : 0;
CMF := (CMF+1) MOD IMF;

IF (stat*[iJ != 01)
WB~lineCMF) z 0;
CMF :(CMF.1) MOD IMF;

ROLLBACK k FRAMES:
IF (OMP > (CXF W) THEN

ERROR: Illegal Rollback
ELSE CMF :a CMF - k

ADVANCE GVT k FRAMES:
IF ((OMF + k) > CMF) THEY

ERROR: Illegal Advance GVT Operation
ELSE OM? OMF + k

Figure 8: Rollback chip operations

12

including the current mark frame (see figure 6). Similarly, define old as the number of written
bits set in the remaining frames for line 1, i.e., those frames older than OMF including the frame,
pointed to by the OMF register. Each line will always be in one of the four states listed in figure 7.
The value of oldl must always be at least one in order to ensure that we can roll back to the OMEF.
the only exception being state 00 which is a special case designed to avoid unnecessary copying of
seldomly written data.

The state information for a line is derived from the written bits for the line and the OMF and
CMF registers. This information can be implemented with simple combinational logic embeddedI
within the written bit array. This simplifies the design because the state information is updated
automatically whenever the written bits, OMF, or CMF are modified, so no explicit action is
required by the control unit in the rollback chip.

The six operations implemented by the rollback chip can now be described. These opera io,
are described in terms of the state maintained by the rollback chip:

@ The written bit W[1,f].

e The state of line 1 denoted statel. This is derived directly from the written bits for line 1.

* The current mark frame register CMF.

e The oldest mark frame register OMF.

In the discussion which follows, MRV denotes the frame containing the most recent version
of line 1, and is obtained by scanning row I of the written bit array as discussed earlier. Ilie
memory address generated by the CPU for memory reads and writes contains the fields roa. frame,
(always 0), line, and byte as shown in figure 3. A register transfer level description of each of thl,

six rollback chip operations is shown in figure 8.

3.3.1 The Reset Operation Before executing the Time Warp program, the rollback chip is ini-
tialized as shown in figure 8 via the reset operation. The written bits in frame zero are set even
though no valid data has been written into the frame. This is to ensure each line always has at
least one written bit set. Memory reads to uninitialized data thus yield arbitrary results just as
they do in conventional computers. The state of each line becomes 01 after reset is complete.

3.3.2 The Read Operation The frame field of the memory address is replaced by AIRVI,, anA
the memory read operation is passed to the memory system. The state of the rollback chip is nol
changed.

13

.-4~

3.3.3 The Write Operation As discussed earlier, the data must be written into the current frajie.
The actions taken by the RBC chip for a write operation fall into the following two broad categories:

1. If WB[line,CMF] is set and state $ 00 (case 1 in figure 8), we may simply write the data
into the current frame. If WB[line,CMFI is not set and state # 00 (case 3), the most recent
version of the line must be read into a rollback chip buffer, modified, and then written into
the current frame. This is necessary because the write need not modify the entire line. Thi..
situation is similar to a write miss in a cache memory system where the cache line must first
be read before it is modified. Subsequent writes do not require this read step, so the first
write into the line of a specific frame is always more expensive than subsequent writes.

2. If st-e,, is 00 (old=0, new=1) then a copy operation is required because otherwise, the
line would either change into an illegal state (old=0 and new >1) if the written bit inl the
current frame is not set, or data which may later have to be restored is overwritten if it is set.
Therefore, the most recent version of the data should first be copied into the oldest frame..."
and the written bit for the oldest frame is set. The write into the current frame can then be
performed. The state of the line becomes 10 (old=1, new>O).

The algorithm for a memory write is shown in figure 8. Buffer is a register in the rollback"-
chip which holds a single line of data. After the first write is made to the line, subsequent writes
up to the next mark operation use case 1, which would take only as much time as an ordinary
memory write operation.

3.3.4 The Mark Operation The mark operation advances CMF by 1, modulo the number of
mark frames NMF. This design of the rollback chip uses a lazy approach to fossil collection in that
fossils are not collected when an advance GVT operation moves OMF past a frame. Instead, fossils
are collected when the mark operation allocates a new frame. If a line in the new top of stack
frame is no longer needed, the written bit is reset and the data stored is, in effect, fossil collected.

One special case may require a copy operation. Suppose the line is in state 10 (old= 1, new>0)
and the written bit of the newly allocate frame is set. The data cannot be fossil collected because
it may be required in a subsequent rollback operation (note this isn't the case of old> 1). The data
must be copied to the oldest frame so it is available for a subsequent rollback.

Finally, the written bits for each line of the new frame are cleared, unless this is the only
written bit set for that line. The written bit should therefore be cleared unless the line is in state
01 (old=1, new=0).

3.3.5 The Rollback Operation Recall the rollback operation contains a single parameter. th',
number of mark frames k to be popped off the stack. Rollback is implemented by simply der,-
menting CMF by k. A rollback which moves CMF beyond OMF is of course an error.

14

i,,i,-' e ,.Z% ,;r, -.. Y., :r;: .*., - -
'p I

p. P *% ~ *~t , . P P ~ . s a. 21 %*s p ~ p t- -. -

o-v WCW WW-' or. -%W.W6lw wwkw~vuulw~w 1

1P

It is interesting to note that the written bits of the rolled back frames need not be reset! If
oldj is at least one before the rollback, then the rolled back data becomes, in effect, very old data
which will never be referenced again, and which will eventually be fossil collected by subsequent "P
mark operations. If old is zero before the rollback, then the line must be in state 00 implying that
new must be one. (It can be shown that the state old=O,new>l is impossible.) In this case there
is only one written bit set in the entire line, so we certainly do not want to clear it.

3.3.6 The Advance GVT Operation The advance GVT operation specifies a single parameter.
the number of frames by which OMF can be advanced. This operation is implemented by simply
incrementing OMF by k. An error occurs if OMF overtakes CMF. The written bits are not modified
by this operation because the lines are not fossil collected until subsequent mark operations, inl
accordance with our lazy fossil collection approach.

-',

4 EXTENS1BILITY

In the previous discussion, each RBC could only accommodate a limited amount of space for
state variables, and a limited number of mark frames (i.e., versions of any individual variable). In
practical applications, more and larger mark frames may be required. Extensions to the original
RBC design to handle these situations will be described next.

4.1 Extentions for Larger Mark Frames

More state variables can be accommodated by replicating the RBC design. An n-fold increase
it the amount of space for state variables can be obtained by -sing n RBCs in each node (see
figure 9). Only simple address decoding circuitry is required to select the appropriate RIC when'
memory read and write requests are issued by the CPU. The reset, mark, rollback, and advatice
operations activate all RBCs simultaneously.

An alternative, more flexible, approach is to borrow cache memory ideas in the RBC iniple-
mentation. Rather than implementing many physical RBCs as proposed above, one can envision
several virtual RBCs mpped to, say, a single physical RBC. Each line managed by the physical
RBC must be tagged to indicate the virtual RBC to which it corresponds. The address of each
memory access must be compared with this tag to determine whether the desired virtual i(
is the one contained in the physical RBC. If so, a "hit" occurs and the memory request cal 1w

processed as usual. Otherwise, a "miss" occurs and the written bits for the desired virtual H ll(
must be loaded into the physical RBC.

For the time being, we assume only four virtual RBCs are used in the extended model. l)efiii
an array TAG[0..15], where each TAG[i] corresponds to ith line in WVB. The value of TAG[i] cold

be either 0, 1, 2, or 3, indicating one of the four virtual RBCs. One more field must be added to,

If't

II
CPU

Controller

RBC RBC ••• RBC

Memory

Figure 9: Multi-RBCs with a Single CPU

16

'K

° o.
o .

the address format shown in figure 3 to identify the virtual RBC to which the address refers. This
new field occupies the two (assuming four virtual RBCs) least significant bits of the roa field. In
general, use of n virtual RBCs produces n-fold increase in the address space of version controlled
memory.

Ordinary memory locations are required for storing the written bit arrays of each virtual

RBC. This memory is denoted by VC[0..3,0..15], each VC[ij] contains 16 bits- the bit pattern of
jth line in ith virtual RBC.

The modification to the original algorithm to accommodate virtual RBCs is shown in figure 10.

RESET: Add
For i=O to 3

For j=O to 15
VCijJ := 1000000000000000; /* bit pattern */

MEMORY READ AT ADDRESS [roa I tag I 0000 I line I byte]:
IF (TAG[line] == tag) THEN

Read M[roa I tag I MRV I line I byte]
ELSE

VC[TAG[line],line] := WB[line];
WB[line := VC[tagline);
TAG[line) : tag;

Read M[roa I tag I MRV I line I byte];

WRITE AT ADDRESS [roa I tag I 0000 1 line I byte]:IF (TAG[line] != tag)

VC[TAG[line),line] := WB[line];
WB[line] := VC[tagline];
TAG[line) : tag;

(the same as original algorithm)

MARK:
For each line in WB

VC[TAG[line), line] : WB[line];
For i=O to 3

WB := VC[i];
(the same as original algorithm);

ROLLBACK AND ADVAICE:
(the same as original algorithm);

Figure 10: Extention for Larger Frames

The above scheme resembles a direct address rnapped cache because each virtual RB(ll 1w

17

% % * . .

mapped to only one physical RBC. Set associated RBC designs are also possible by using several
physical RBCs and allowing a virtual RBC line to be mapped to any one. Address comparison,
hardware like that in set associative cache memories will be required, however.

4.2 Extensions for More Mark Frames

More mark frames are required if mark operations create new versions faster than advance
GVT operations can fossil collect them. At some point, the number of required frames may exceed %
the number provided by the RBC. The RBC design can be extended to accommodate this situatiol.

Let us define the segment of memory managed by a single RBC to be a working ara. The
starting address of each working area is subject to the same alignment constraint as discussed
earlier. As in the original RBC design, each working area is managed as a circular list containinlg
16 frames. To accommodate more frames, multiple working areas are allowed, and managed il
software as an extensible list. The RBC manages only the most recently created working area(s).
The RBC generates a trap to the processor when a reference to a working area not managed by
the RBC (i.e., further back in the list of working areas) is required.

Initially, only one working area is in use. One new working area is allocated when the RBC
runs out of frames, i.e., overflows the most recent (in this case, the original) working area. After
the new area is allocated, the RBC manages the 16 most recent mark frames, some of which ar(
in the newly allocated working area, and the rest in the original. As time progresses and more
working areas are allocated, the RBC continues to span (at most) the two most recent working
areas. These are referred to as the current working areas while older ones that are still in use are
called hidden working areas. Written bits and other state information for hidden working areas are,
stored in arbitrary locations of non-RBC managed memory. One of the two current working areas
is referred to as the even-numbered area, and the other as the odd-numbered area. The algorithi
described in the original design can be viewed as a special case where all of the frames managed by
the RBC belong to the same current working area, and no frames belong to hidden working areas.

This scheme for extending the RBC design allows the Time Warp program to expand to
consume an arbitrary number of mark frames, subject only to the amount of memory available in
the node. In order to manage the bookkeeping of the multiple working areas, the following registers 4
are required:

WA[O..15] A 16-bit array, each bit corresponds to a frame in WB.

e WA[i] = 0, when the frame belongs to an even-numbered working area;

* WA[i] = 1, when the frame belongs to an odd-numbered working area;

ODD A register to indicate the current odd-numbered working area.

EVEN A register to indicate the current even-numbered working area.

18 1
Ei'

. w C

%

OVER A register to indicate the point where the overflow occurs, OVER is also the oldest fmia11,'
of each working area (the same for all mark frames).

NUM A register to count the total number of frames currently in use.

WBAUX[i, j] An array in memory to hold the written bits for hidden working areas. This array
is manipulated by processor routines. The indices i and j denote the j-th frame in the i-th
working area.

WB in the RBC contains the written bits of portions of the current odd and even-numbered
working areas. The meaning of OMF is also changed. It now points to the oldest mark fran..
in the current working areas. The MRV (most recent version) is now determined not on) ' v)y i
frame number, but also by the working area (odd or even) containing the frame. The algorit him ii
such that the most recent version of each state variable is always within the current working area.

The operations of the RBC are modified as follows:

Mark operation If the CMF does not exceed the OMF, i.e., no overflow of the current working
area occurs, the mark operation is identical to that described earlier. Otherwise. the O.NIF is
deleted from the RBC, i.e., its written bits are saved in WB_..AUX. Usually, this will create a
vacant mark frame that held state variables for the older of the two current working areas.
so the tag bit associated with the frame (WA) must be complemented to indicate the frame
now belongs to the newer area. If, however, the vacancy held variables from the newer frane
(this occurs when all of the frames managed by the RBC are within the same working ara)
then a new working area must be allocated and the EVEN/ODD registers must be updated
appropriately. The MARK operation can then be completed according to the algorithIn
described in the original RBC design, with one additional step: if updating the written bits
would cause a line to have no written bit set in any frame in the current area, a copy operatio1
is necessary to prevent the line from entering an illegal state. This allows all future read an(I
write requests to be handled completely within the RBC without referring to "hidden'" written

bits stored in WBAUX.

Rollback operation If the rollback does not go beyond the extent of WB, this operation is
identical to that described earlier. If it does extend beyond this point, the RBC determines'
which working area is to become the most recent, restores the bit patterns of the working
area into WB, and updates the values in EVEN, ODD, CMF and OMF to reflect the stath,
of the computation after roll back.

Advance operation When the advance operation does not extend beyond the frames in thn ,
hidden working areas, the RBC simply decreases the counter NUM. Old working areas cli
now be fossil collected, and their storage reused. If the advance operation extends into the
current working areas, the OMF register must be updated.

19

K w* r 'r -r W r- -W

The details of the extended algorithm are given in figure 11. With the exception of the
one special case noted in the MARK operation, program data is not moved in memory. The
only swapping that must be done is the written bit information. This greatly reduces saving and
restoring overhead required in the extended algorithm.

The address format need not be changed to accommodate the change of algorithm. As iefore.
the RBC used the roa field of the address supplied by the CPU to determine if the reference is
to version controlled memory. However, rather than passing this field unmodified to the niemory
system, it replaces it with the high order bits of the pointer to the working area (odd or evei,) that
is referenced. These addresses are buffered in the RBC and updated when overflow and rollback
occur.

5 CACHE AND MEMORY MANAGEMENT UNITS

This section will describe the interactions between RBC, cache memory and memory mai-
agement units, features common to many off-the-shelf microprocessors. Ideally, the RBC should be
integrated into a custom designed CPU, tailored to the operations performed by the RBC. llowever.
it can be used with standard microprocessors if certain precautions are taken.

Caches are high speed memory devices that buffer frequently used data. They are conmoni
among high performance mainframe and mini computers, and more recently, among high prf)r-
mance microprocessors. When used with a microprocessor with an on-chip cache, the cache menilrv
must necessarily reside between the CPU and RBC.

Caches use either a write through or a write back policy. If a write through policy is used.
memory writes are transmitted through the cache and to the RBC as they occur. The 1113C cart
be used without any difficulty with write through caches.

However, if a write back cache is used, the cache does not generate memory writes until cache
lines are removed from the cache by the replacement policy. Therefore, the RBC may not detect
the write until long after it has occurred. This is problematic because a MARK operation may
have occurred after the CPU generated the write. Therefore, the RBC may receive the write and
MARK operations in the wrong order, causing an error.

There are several solutions to this problem. The most straightforward is to disable tl,, cache.
or ensure that state variables of the simulation are not cached. Alternatively, one may flush th,

cache before each mark operation. The approach to be taken is dependent on the operation of the
cache in the microprocessor being used. Caches must provide some facility to handle such sit uat iois,
in order to ensure consistency when I/O devices access memory.

Similarly, many modern microprocessors contain a memory management unit(M.MU). Ilie
purpose of the MMU is to translate virtual addresses into physical addresses. If the BBC(' -;ii, h,
placed between the processor and the MMU. no difficulties arise. Again. this is not po,,iblh i lo.

20

,.,,.', -":¢, " ' '" ,.-< .-", -" " -. .-.'r*' "'"""-'."-'- "- ''.-."'"', '".""""."' :.""'"'" "".'''"' ":" IV .

RESET:
Add

WAi 0, for all i;
EVEN 0;
ODD -1;
NUN : 1; .

READ N WRITE:
Unchanged (except the NRV is no. determined by scanning the WB,
WA and the value in EVEN/ODD)

MARK:
IF (((CMF+I) mod NMF) == OF) THEN

IF (EVEN <- ODD) THEN
WBAUX [EVENOMF] : WBE [OMF);

ELSE
WBAUX [ODD, OMN] : = WE [OMF);

NUM := NUM + 1;
For j = 0 to 16 do

IF C WB[OMF, jJ ==I)
IF (WB[OMF+I. j] ==0) THEN

Buffer := M[roa I ONF I line 1 0000)
Write buffer to N[roa I ONF +1 1 line I 0000.
WB[OMF+I,j] : 1;

WBEOMF, j] := 0;
end-do;
IF(WA[O..16) == 0) ODD : ODD + 2;
IF(WA[0. .15) == 1) EVEN : EVEN + 2;
OVER := ONF;
WA[OMF] := I WA[OMF];
OMF : (OMF+I) mod NMF;
CMF : (CMF+I) mod NMF;

ELSE
(the same as previous algorithm, UM := NU + 1)

ROLLBACK k FRAMES:
IF (k > NUN) THEN ERROR: Illegal rollback;
ELSE IF (k > ft) THEN /* ft = ((CNF-OVER+NMF) mod NMF)+I, the

number of frames in top working area */ S
IF ((fs==O) and (OVER !=ONF)) THEN /* fs=C(k-ft) div NMF)*/

OVER;
IF (EVEN > ODD) THEN e

While (Mi mod NMF) != OF) do
WB[j := WBAUX[ODD, j];
WA[j] : 1;
j := j+1;

end-do;
EVEN : EVEN -2;

21

0%d

Al JL

VV

ELSE
While C(j mod IMF) != OMF) do

WB[j] WBAUX[EVEN, j];
WAUj) 0;
j := J+1;

end-do;
ODD := ODD -2;

ELSE
For j = ito (fs+l) do

IF (EVEN > ODD) THEN
EVEN EVEN - 2;

ELSE
ODD ODD - 2;

end-do;
IF (EVEN > ODD) THEN

WB := WBAUX[EVEN];
WA[O..15) := 0;

ELSE
WB := WBAUX[ODD);
WA[O..15) := 1;

CMF (OVER - (k -ft-fs*NMF) +NMF) mod NMF;
NUN NUM - k;
IF((CMF -OVER+NMF) mod NIF +1 <= NUM) THEN

OF1: OVER;
ELSE

ONF (CHF-NUN+I+NMF) mod NMF;
ELSE

CMF : (CMF-k+NF) mod IF;
NUM NUM- k;

ADVANCE GVT k FRAMES:
IF (NUM < k) THEEN ERROR: Illegal advance;
ELSE IF ((NUM-fw) >= k) THEN /* fr=((CF-OF+NMF) mod EXF)+1 e/

NUM :R UM - k;
ELSE

0117 : (OMF+(k-(UM - fw)) NNF) mod NMF

NUM : NUN - k;

Figure 11: Extention for More Frames

9

22

Vf

1..

MMU is on the same chip as the CPU. If the RBC lies between the MMU and memory, the RBC
deals with physical (rather than virtual) memory addresses. The RBC assumes, however, that the
state variables occupy contiguous memory locations, so some constraints must be placed oil the
MMU mapping to ensure that this condition is not violated.

6 IMPLEMENTATION OF THE RBC

IABI state r
OMF CMF

bar. shiffter .
combin. _

Control Unit

prio. encoder-
,.

Figure 12: Functional Block Diagram

A block diagram of the original envisioned RBC design is shown in figure 12. The barrel
shifter and priority encoder are used to locate the most recent version of a state variable. The
value produced by the priority encoder is subtracted from the CMF register to obtain the appro-
priate mark frame. This operation can be implemented with combinational logic, allowing rapid
computation of the most recent version's frame.

The combinational logic below the state bits is a circuit using input from the barrel shifter to
determine the state of each row in WB. Alternatively, this can be implemented within the writ tell
bits array itself. Finally, the control unit plays a central role in controlling the operation of the
chip.

23

. r- :-. - -- . .. %.% - -. - .* .- %.- ;:-:..... ..-. 4. -4;.: - .. .?4... . ' "" "" "" " ' "'

7 CONCLUSION

We have described a special purpose component, the rollback chip, to offload state saving
and version management overhead in the Time Warp algorithm to special purpose hardware. It is
a key component of a special purpose, distributed discrete event simulation engine based on the
Time Warp paradigm. Other aspects of the simulation engine are currently under investigation.

At the time of this writing, the algorithm used by the RBC has been formally verified.
Detailed design and implementation of the RBC is currently in progress. Fabrication of key com-
ponents of the RBC is expected to take place in 1988. Performance evaluations of the RBC, and
the distributed simulation engine as a whole, are planned.

References

[B*85] W. Biles et al. Statistical Considerations in simulation on a Network of Microcomputers. 19S5
Winter Simulation Conference Proceedings, 388-393, December 1985.

[C*84] J. C. Comfort et al. The Design of a Multi-Microprocessor Based Simulation Computer - III.
Proceedings of the Seventeenth Annual Sumulation Symposium, 227-241, 1984.

[CM79] KM. Chandy and J. Misra. Distributed Simulation. IEEE Transactions on Software Engineering.
SE-5(5):440-452, September 1979.

[Com821 J. C. Comfort. The Design of aMulti-Microprocessor Based Simulation Computer - I. Procerding,
of the Fifteenth Annual Sumulation Symposium, 45-53, 1982.

[Com83] J. C. Comfort. The Design of a Multi-Microprocessor Based Simulation Computer - II. Proceed-
ings of the Sixteenth Annual Sumulation Symposium, 197-209, 1983.

[Com84] J. C. Comfort. The Simulation of a Master-Slave Event Set Processor. Simulation, 42(3):117-121.
March 1984.

[DS80] E. W. Dijkstra and C.S. Scholten. Termination Detection for Diffusing Computations. Inf,,,ina-
tion Processing Letters, 11(1):1-4, August 1980.

[Fuj88] R. M. Fujimoto. Performance Measurements of Distributed Simulation Programs. In 1988 Soczdl
for Computer Simulation Multiconference, San Diego, CA, February 1988.

[FWW84] M. A. Franklin, D. F. Wann, and K. F. Wong. Parallel Machines and Algorithms for Discrete-
event Simulation. Proceedings of the 1984 International Conference on Parallel Processing. 449-
458, August 1984.

[Jef85] D.R. Jefferson. Virtual Time. ACM Transactions on Programming Languages and Systcms.
7(3):404-425, July 1985.

[JJE79] J.K.Peacock, J.W.Wong, and E.G.Manning. Distributed Simulation Using a Network of Proces-
sors. Computer Networks, 3(1):44-56, February 1979.

[Kau87] F. J. Kaudel. A Literature Survey on Distributed Discrete Event Simulation. Sinfuht,.
18(2):11-21, June 1987.

24

"o"-,.

[Mis86] J. Misra. Distributed Discrete Event Simulation. ACM Computing Sureys, 18(1):39-65, March
1986.

[Ree87] D. A. Reed. Parallel Discrete Event Simulation: A Shared Memory Approach. To appear, IEEE
Transaction on Software Engineering, 1987.

[RF87] D. A. Reed and R. M. Fujimoto. Multicomputer Networks: Message-Based Parallel Processing.
Computer Science, MIT Press, 1987.

[SI86] R. J. Smith 11. Fundamentals of Parallel Logic Simulation. 23rd Design Automation Conferencc.
2-12, June 1986.

25I

V W* V 4P

7ML

-w - w W .w 0 w w w w - -

